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Abstract. The local density functional approximation (LDA) is used to calculate magnetic
and magneto-elastic properties of itinerant-electron systems at finite temperatures. At the centre
of the theory given are spin fluctuations whose modes are coupled by interatomic exchange
interactions. The susceptibilities, the Curie temperature, and the thermal expansion coefficients
are obtained from a Hamiltonian in whidil of the parameters are calculated usatginitio
constrained ground-state total energies. Results are given and compared with experiment for
three cases having exceptional magneto-elastic properties; thege~arethe Invar alloy FgPt,
andy-Mn.

1. Introduction

Perhaps the best known magneto-elastic effect is that observed in Invar alloys, like
e.g. FeNi;_, or FePt_,. This effect [1] has now been known of for 100 years, but
still attracts a great deal of attention—see for instance the reviews in [2—4].

In attempts to understand this effect theoretically, the early phenomenological two-state
model of Weiss [5] and later local density functional calculations [6, 7] suggested that
there are two energetically nearly degenerate states: a high-spin state with a large volume
and a large magnetic moment, and a low-spin state with a small volume and a small or
even vanishing magnetic moment, the energy difference of these being in the thermal range
and so permitting longitudinal spin fluctuations that lead to strongly coupled magnetic and
elastic degrees of freedom. Subsequently a large number of band-structure calculations were
performed for Invar alloys to obtain the total ener@y(M, V), as a function of the magnetic
momentM and the volumeV [8-13]. By means of a semi-phenomenological Ginzburg—
Landau description that goes back to work of Murata and Doniach [14] and others [15-17],
the total energy can be used to obtain the phase transition and the temperature dependence
of the magnetic properties in weakly magnetic itinerant-electron systems; see e.g. [12,
13, 18-22]. The important point to notice here is that the expansion coefficients of the
free energy are extracted from the calculated total energy, whereas the coefficients of the
gradient term describing the mode—mode coupling of fluctuations are fitted to experimental
results [15, 23].

In a recent publication [24] we showed haall of the parameters of the Ginzburg—
Landau description can be obtained by means of total-energy calculations. In particular,
the gradient term is replaced by a more general coupling term which describes excitation
energies that can be obtained from total energies calculated for spin-spiral configurations.
Thus magnetic properties such as the Curie temperature and the magnetic susceptibility
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were calculate@b initio for Fe, Co, and Ni, resulting in fair agreement with experimental
data [24].

To generalize the theory to describe magneto-elastic properties, we must include
fluctuations of the volume in addition to those of the magnetization. Furthermore, in
contrast to the case for the transition metals, Fe, Co, and Ni, where the total energy as
a function of the magnetic moment can be approximated well using a rather small number
of expansion coefficients [24], the magnetic orderingyitie and the Invar alloy Rt
depends sensitively on the magnitude of the magnetic moment or the volume, as has been
shown in earlier work [25, 26]. Here, in Taylor series expansions of the total energy, we
must take into account a large number of terms involving powers of the magnetization
M and the volumeV. Thus, applying the theory tp-Fe and FgPt, we plot the total-
energy curves of the collinear and non-collinear spin arrangements, and use them to extract
the parameters valid for the spin-fluctuation Hamiltonian of each particular system. Using
this Hamiltonian in a mean-field theory, the temperature dependence of the magneto-elastic
properties is obtained, and the Curie temperature as well as the thermal expansion coefficient
are calculated and compared with experimental results. Finally, we focus our attenfien on
Mn for which the antiferromagnetic ordering not only is connected with a volume expansion
but also is accompanied by a tetragonal lattice distortion which decreases with decreasing
order parameter and vanishes above tlkelNemperature. We preseatt initio calculations
for the Neel temperature and show the distortion parameter as a function of the temperature.

2. Spin-fluctuation theory

2.1. The total energy

To describe magneto-elastic properties of metallic systems, we assume that the Hamiltonian
‘H is a functional of the magnetizatioM (r) and the volumeV (r), i.e. H[M (r), V (r)]

at any pointr in space. Thus, the total energy Bt= 0 K is a function of the ground-

state valuesM andV: E(M, V). Simplifying here, we restrict the-dependence of the
Hamiltonian to values of on the crystal lattice which we denote HR}. We thus omit

any fluctuations of the magnetization on a scale smaller than the interatomic distances. This
is an atomic sphere approximation because the magnetization vector of an atomAt site

is characteristic for the entire atom at this site and the interstitial plays no role.

The magnetizatiomV of the ground state is not necessarily ferromagnetic, but may
be defined by the magnitude of the magnetizatidh a wave vectorq describing the
propagation vector of a spiral, and a polar anglesuch that the magnetic moment of an
atom at the siteR in the crystal is given in Cartesian coordinates by

M = M(codq - R) siné, sin(q - R) sind, cosh). (1)
For instance, a ferromagnet might be specified by the polar ahgl€°:
M = M(0,0, 1) (2)

and an antiferromagnetic spiral configuration having a vanishing net magnetization by
6 =90
M = M(cosq - R).sin(q - R).0) 3)
which in particular defines a collinear antiferromagnet ¢f i2 a reciprocal-lattice vector,
since in this case cog- R) = +1 and sirig - R) = 0.
We obtain the total energlf (M, V) numerically by means of constrained non-collinear
band-structure calculations using the non-collinear fixed-spin-moment method described in



Exchange-coupled spin-fluctuation theory 7887

[25, 26]. In [26] it was also shown that the total energy can be separated with good accuracy
into a volume-dependent contributiafi: of the collinear configuration and a volume-
independent non-collinear contributidty, which describes the energy difference between
spin configurations of different wave vectags E(M,V) ~ Ec(M,V) + Eyp(M,q.0).

This suggests that, for an analytic treatment, we may expand the energy contriliigions
andE, in powers ofV andM, where, because of time-reversal symmetry, only even powers
of M occur. Furthermore, since numerical calculations show EqatM, q, 6) o sir? 6, we

may thus write the total energ§ (M, V) as

Nmax Mmax Nmax

E(M,V) = Z Z A MP'V™ + sir? 0 Z (@ M?. (4)
n=1

n=0 m=0

This expansion defines the quantitias,, and J,,(q) which may thus be calculated from
total-energy differences. It was used by us previously in [24], where, however, we did not
consider any volume dependence. The appropriate valugg.andmmax Will be specified

in section 3.

2.2. The Hamiltonian

The Hamiltonian of the crystal possessing magnetic moma&fitd?) and volumeV (R) is
now written as

1 1
M= Y @c(M(R). V(R) + N Y ) @p(M(R). M(R).  (5)
R R R

For this Hamiltonian to yield the total energy given by (4), the first term on the right-hand
side, ¢, denotes the collinear part of the total energy and is given by an expansion in
powers of M?(R) andV (R) as

Oc(M(R), V(R) = Y AuM?” (R)V"(R). (6)
The second term on the right-hand sidgy, originates from the non-collinear part of the

total energy and contains a description of magnetic exchange between the magnetic moments
on different sitesM (R) and M (R). It is written as a Taylor series expansion as

®o(M(R), M(R)) =Y J,(R— R)M?(R)(M(R)- M(R)).  (7)

Here theJ,(R — R’) denote exchange constants for different sitlBsand R/, which are
connected with the quantity, (q) defined in (4) by the lattice Fourier transform

JW(R—R)= % > Jn(k) explik - (R~ R). (8)
k

To treat fluctuations at finite temperatures, the classical fidldsR) and V(R), are
decomposed into average valuéd, and V, and fluctuations of the magnetizatior (R)
(wherej = X, Y, Z denotes Cartesian components) and the voluraR):

M(R)= M+ m;j(Re; ©)
J

V(R) =V + w(R). (10)
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Because of the periodicity of the crystal, the fluctuatiengr) and w(r) are given by
lattice Fourier transforms:

mi(R)= Y myexplik - R) (11)
kelBZ

w(R) = ) wpexpik- R) (12)
kelBZ

where the wave vectdt lies in the first Brillouin zone (1BZ).

2.3. The free energy

Using the abbreviatiog = (kzT)~1, we write the partition functior® and the free energy
FasZ = [dI' exp—pH) andF = —g~*In Z. Here [ dI' denotes the classical integral
over the phase space of fluctuations. Because the fluctuatipi@@) and w(R) are real,
the number of independent variables is restrictedrly,;, = m}‘,_k = xjp + iy and
wyk = w*, = xor +iyox. Thus the integral over phase space is given by

Jor=(I1 feoe [ )11 [ e [ )

where the prime denotes that the product includes onlykemector of the pair+k, —k).
With the Hamiltonian given by (5), the partition functidhcannot be evaluated exactly.
Therefore, the free energy is approximated by the Peierls—Feynman inequality:

F < Fsp = Fo+ (H)o— (Ho)o. (14)
For the so-called model Hamiltoniaf{y, we use the quadratic form
Ho =Y _ ajklmkl®+ Y brlwg|? (15)
jk k

thus reducing the functional integration to Gaussian integrals. The free energy corresponding
to Ho is given byFo = —B1In Zo whereZ, = f dr" exp(—BHp) and( )o denotes a thermal
average calculated with the model partition functifn The approximate free energysr

is thus calculated to be

1 14 1 14
Fsr = —ﬁZm <2ﬂajk> — ﬁijln (Zﬂbk) + (H)o — (Ho)o-  (16)

ik

Finally, the coefficients:;;, and b, appearing here are obtained variationally, i.e. they
are chosen as those which minimize the free enebd¥sr/da;r, = 0 anddFsr/db, = 0.
To carry out this calculation we next express the thermal aver@grsand (Hp)o in terms
of ajr, andby,.

2.4. Calculation of thermal averages

In general, the thermal average of a functidn, that depends on the fluctuations; is
determined by

(F(xjg))o = (/d[‘ F(xjx) exp(—,BH@)/(/dF EXp(—ﬁHo)>. (17)

Because of the simple model Hamiltoniafy, the averages are Gaussian integrals, and one
obtains easily for even powers of;, and y;

(X0 = (2n — D (4Baj) ™" = (2n — DI (x5 (18)
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whereas averages of odd powers vanigff, *)o = 0. (For j = 0 the quantitya;). stands
for by.) Thus, in the foIIowmg we may replace the coefﬁmeaps and by, by the average
values(|m;x[?)o = (x7.)o + (y7)o and (jwk|*)o = (x,)o + (¥§,)o in the form

(Imjk?o = (2Bajr) " (lwgl?)o = (2Bbr) ™t (19)

The averaged model Hamiltonian thus becomes

HOO—Zalk Imjk)? O+Zbk |wi|?) 2/32 + ,321' (20)
k

The powers of the ﬂuctuationmf(R) =3 Imjxl? andwjz(R) = >, lwg|?, are calculated
to be

(m" (R))o = (2n — D" (21)

(w? (R))o = (2n — D> (22)
where

n? = ij (Imjil*)o (23)
and

% = ; (lwk*)o- (24)
For the average ob,, one uses (8), obtaining

(; J(R— R)ym®**(Rym, (R/)>O = 2+ DUGD' 3 (25)
where

dz Z Ja (k) (Imji %o (26)

Since the magnetizatiod (R) is composed of the average magnetizatibf and
the components of fluctuations;(R), the thermal averageM?' (R))o is given by a
polynomial in powers of(|m x|, (Imyrl®)o. (Imzrl?)o, and M2. In particular, for the
ferromagnetic case and the antiferromagnetic case, where the magnetization is given by (2)
and (3), respectively, the average values of the two transverse fluctuatippandmyy, are
degenerate, and we define transverse fluctuation§myy|?)o = (Imxk|®o = (Imyx?o,
and longitudinal fluctuations by|m;x|?o = (lmzk|?)o. Then we express the thermal
average{M?'(R))o in terms of powers ofi2, m?, and M?:

(M (R))o = (Mg + m(R))o= Y FuM*nZmn? (27)
ptt+=n

wherem2 and m?2 are defined by (23) using = T and j = L, respectively. For the

thermal average involving the exchange-coupling terms, we obtain

(Z JJ(R— RYM?* (R)M;(R)) > N FuaMP 2l Ol + hiad?y).
n+t+l=n

(28)
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The polynomial coefficients,,;, Ar,,, andi,,, depend on the form of the macroscopic
magnetizationM of (1). For the ferromagnet, equation (2), they are calculated as
Fo_ W+t +D'2'2u + 21 — H!
wil Wl (2u — N (29)
AMy=2+2 Muy=2u+2+1

and for an antiferromagnetic spin-spiral configuration, equation (3), one obtains
A _ (LW+t+D'2(u+ 02 — D!

wET w! (30)
My =2u+2t+2 AMu=2+1

In the same way, the thermal averages of powers of the volume are calculated as
(V"(R))o=((V+wR) o= >  GuV'D* (31)
v+2u=m
where the binomial coefficients,, are given by
Gy = (v + 2u)!
v! (2u)!

A detailed calculation of the coefficien,,;, A7, Aru, andG,, can be found in [27].
Finally, using equations (27), (28), and (31), we obtain for the thermal average of the
Hamiltonian, equation (5),

(2u — 1N, (32)

(H)o = Y Aun (M (R)o(V" (R))o+ Y_ (Y (R = RYMPHR)M;(R))
n,m n R

2u ~2t ~21 ~ 2 32 72
= E FWIM “mT my ( E AanWVUw %4 )\denT =+ )‘-LuldnL>-
ﬂtl vu
n=p+i+l m=v+2u

(33)

This, together with (19), completes the specification of the free energy, equation (16). Tables
for the coefficientsF,,,; and G,,, are given in the appendix.

2.5. Self-consistency equations

The thermal equilibrium values faZ and V as well as their ﬂuctuationgmmz)o and
(lwi|?)o are calculated by requiring that the quantitieg, b, M, andV minimize the free
energyFsr, i.e.

oF oF oF oF

0= SF 0= SF 0= SF 0= SF' (34)

oM A% a(ljk 8bk
Because of (19) we may replace the derivatives with respegfit@nd b, by derivatives
with respect to{|m;x|?)o and (Jwg|?)o. Furthermore, using the identities

3(H)o/d{Imjk*)o = d(H)o/d ()0 + Y _ Ju(k) (H)o/d(d2)o

and

3(H)o/d(Imrk|*)o = 29 (H)o/d(Imx|*)o
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we obtain the following self-consistency equations:

o= 2o (35)
oM
o Mo )
A
2 3 (H)o 3(H)o
_ Ty 2 37
2B{mrelPlo o % 2 ()ad,fT (37)
1 H)o
= 38
2B(Imrx|?)o m? (38)
1 (R )

2B (lwkl?)o ow?

These equations are easily written out explicitly, and enable us to calculate self-consistently
the quantitiesM, V, (|mri|®o, (Imrkl?)o, and (Jw|?)o which determine the thermal equil-
ibrium of the system.

In the paramagnetic case, the average magnetization vanishes/ i-e.0, and all
components of the fluctuations are degenerdi@,pr|?)o = (Imxkl?o = (Imyrl?)o =
(Imzk|?)o. In this case the mean value of the Hamiltonian can be simplified:

(HP)o Z(Zn + D2 < > AmGu V'™ + (20 + 3)%) (40)
mvu
v+2u=m

and the self-consistency equations of the paramagnetic case are given by equations (36),
(39), and

3 =88<2+Z~I(k)() (41)

2B(m px|2)o d?,

The inverse magnetic susceptibili;g;( (k) can be calculated easily from the second
derivative of the free energy:

PFsr 1
Imjcery 0mj—ry  Bllmjkl?o
Evidently, the best variational coefficients of the free energy, equation (16), are given by
the inverse susceptibilityy;x, = x; Y(k)/2, whosek- dependence is in first order given by

the Fourier coefficients of the exchange constaxljfé,(k) =X L0) + 2Jo(k).

X (k) = = 2ap,. (42)

3. Calculational details

Our band-structure calculations presented here are performed with the augmented-spherical-
wave (ASW) method [28], which is based on the local spin-density approximation (LSDA)

to the density functional theory [29-31]. In particular, using the non-collinear fixed-spin-
moment method [25, 26] we are able to perform constrained-moments calculations of non-
collinear spin arrangements. This enables us to compute electronic properties of different
magnetic configurations, i.e. for any choice of the magnitudes of the moraadttheir
directions, and to determine their mutual range of stability by comparing the resulting total
energies.



7892 M Uhl and J Kibler
4. Results

4.1.y-Fe

In recent yearsy-Fe has received much attention [8, 9, 32], because, among other things,
many iron alloys showing anomalous magneto-elastic properties are based on the fcc
structure ofy-Fe—for instance RgNiss, FeoNizg, and Fe—Mn alloys [3]. In nature;-Fe

exists only as a high-temperature phase, whereas at low temperatures it can be stabilized
for instance by small amounts of Co [33, 34].

Experimental investigations [33, 34] have shown, that, at certain volume€s, has an
antiferromagnetic ground state and, due to its frustration in the fcc lattice, assumes a non-
collinear spin configuration. These results are confirmed by theoretical work [35], including
band-structure calculations [25, 36, 37]. In recent work by Astedl [32] magneto-elastic
properties ofy-Fe were investigated, and an anomalously high thermal expansion coefficient
was observed which deviates significantly from the normaln@isen behaviour. This so-
called anti-Invar behaviour is explained by the coexistence of an antiferromagnetic low-spin
(LS) state at small volume and a ferromagnetic high-spin (HS) state at large volume; see
e.g. [38]. Thermal occupation of the HS state results in a large magnetic contribution
to the volume expansion. A detailed theoretical study of the different collinear and non-
collinear spin configurations of-Fe was given previously [26]. However, a thermodynamic
treatment is still lacking. We present one here, based on the self-consistent spin-fluctuation
theory of section 2.

Ec(M.s)

s/1re]

0 0.5 1 15 2 2.5 3
M/ [be]

Figure 1. y-Fe: the collinear contribution to the total enery (M, V) in mRyd per unit cell.
The distance between nearest contour lines is 4 mRyd. The locbis=00 (- - -) andp = 0
(= — -) (see the text) is also given.

In figures 1 and 2 we plot foy-Fe the total-energy contribution&c and E,, which
add up to the total energyj(]f/[, V)=Ec(M,V)+Ey(M, q,0). The energy dependence
on the volumeV (or the corresponding Wigner—Seitz radius V = (47 /3)s%) and the
magnetic momenM of Ec-(M, s) is shown in figure 1, which reveals that the ground state
of y-Fe is non-magnetic, corresponding to the minimumegfiM, s) at My = Oup and
sg = 2.56rg, whererp denotes the Bohr radius. Furthermore, the locus of zero derivatives,
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Eq(M.q)

M/ [ug]

Figure 2. y-Fe: the non-collinear contribution to the total ene@y (M, q) in mRyd per unit
cell for wave vectorgy = (0, 0, g)27 /a. The distance between nearest contour lines is 1 mRyd.
The line (- - -) depicts those wave vectaysvhich minimize E for fixed values ofM.

i.e.b = 0Ec/0M = 0 (the heavy dotted line) and = 9E-/dV = 0 (the heavy dashed
line) are drawn, which indicate an additional high-spin state of higher total energy having
a magnetization oM = 2.5, at a Wigner—Seitz radius of= 2.65r3.

In figure 2 the total-energy contributiaFi, (M, g) describes the total-energy costs of a
spin-spiral arrangement defined by the veejoand the magnitude of the momemt; see
(3). Here the heavy dashed line denotes the particular wave vgctohich minimizesk
for a given value of\1. It is seen that at small values of the magnetizatih<£ 2.5u5) the
moments tend to order antiferromagneticalfy£ 0), whereas at large valuesf(> 2.5u3)
the ferromagnetic configuratioy & 0) is favoured.

This complex behaviour of the energy surfaces shown in figure 1 and figure 2 gives rise
to the need to use a large number of terms in the Taylor series expansion of the total energy
E(V, M, q), given by (4). In particular, for-Fe, terms up ta® and V* in Ec(M, V)
and Eo (M, q) must be employed. Th@-dependence of the latter is approximated by a set
of 20 vectorsg, spread homogeneously over the irreducible part of the Brillouin zone.

With this numerical input and the equations (35)—(39), the fluctuations and wy,
as well as the equilibrium values @f and V were calculated self-consistently, scanning
a large temperature range. Our results JoFe are shown in figure 3, where we plot
the paramagnetic fluctuationsi2 = ", (Imp|?)o, as a function of7’, from which the
magnitude of the local moment; is calculated as

M, = /33,

Also given are the inverse susceptibilitigs(k) = (B(|mpr|?)o)~* for two different k-
vectors, x “1(F) for k = (0, 0, 0) (the uniform susceptibility or ferromagnetic mode) and
x~(A) for k = (0,0, 27 /a) (the staggered susceptibility or antiferromagnetic mode).

At low temperatures,y 1(F) is about ten times larger thap—1(A), whereas with
increasing temperaturesy ~*(A) increases more quickly thag—'(F). Thus at low
temperatures, predominantly antiferromagnetic fluctuations forming small local magnetic
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16 4 16
1.4
12
N
o 08 -
= Z
= o6 &
£ E
0.4 s
b >
02

D [

-0.2

0.4 F §

0 200 400 600 800 1000 1200 1400
T/[K]

Figure 3. Paramagnetic ﬂuctuationsﬁg/u%), the susceptibilitiesy ~1(F) and x~(A) in
mRyd/u%, and the magnetic correlation of nearest neighbdﬂﬁm%, scaled by a factor
of 10, for y-Fe, as a function of temperature.

moments Y; < 1.5up) are excited, whereas at higher temperatures a large occupation
of ferromagnetic fluctuations occurs, leading My > 1.5up; see also figure 2. This

is shown even more convincingly by the magnetic correlation between nearest-neighbour
sites, defined by

K = (M(0) - M (dyn))o =3 €08k - dy)(Im pk|*)o
k

whered,, is the distance between nearest neighbours. The correlation funetjdit,),
is also shown in figure 3, where &t ~ 390 K we observe a maximal antiferromagnetic
coupling, noticeable by the minimum ef,, (T).

In figure 4 we show the magnetic contribution to the temperature dependence of the
volumeV and the thermal expansion coefficiesmt= (1/3V)dV/dT. Our calculated curves
(calc.) are compared with experimental data (exp.) of Astedl [32]. The increase of the
volume is brought about by a thermal occupation of high-spin states associated with large
volumes, as shown in figure 1. It is seen that for> 600 K the experimental thermal
expansion coefficient decreases slightly with increasing temperature, which is due to its
magnetic contribution. This behaviour is in agreement with our calculations, and may
be explained by the fact that with increasing temperature the increase in the fluctuations
becomes smaller, leading to a smaller but still positive value(8f) even for temperatures
above 1000 K. In a large temperature range our calculated thermal expansion coefficient is
somewhat smaller than the experimental one but still in reasonable agreement, whereas near
T = 0 we obtain a non-vanishing(7'). This incorrect behaviour is due to our treating the
spin fluctuations as classical variables, which does not describe properly the freezing out of
the spin excitations af — 0.
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T T T T T T T
35 F H1.14
30 N 41.12
a(exp.)
25 + STl 4110
: \\V'/ T ——— S
N4 AN —
QPO 20 v/' . —41.08 .Z.o
=] / ~.a(calc.) =
= / o~ g >
15 | el 41.06
. V(calc.) ' e
0F d1.04
5/ 7 V(exp)) 11.02
0 ‘ | ! | | | ! ! 1.00
0 200 400 600 800 1000 1200 1400
T/[K]

Figure 4. The relative volume ¥ (T)/ Vo) and linear expansion coefficient (10~¢ K1) of
y-Fe as a function of the temperatufgK: The calculated curves (calc.) are compared with
experimental data (exp.) of Acet al [32].

4.2. FgPt

FesPt is one of the best-known Invar alloys. It is based on the fcc structupeks, where

one of four Fe atoms in the cubic unit cell is replaced by Pt. Similar to the cage-far,

the Invar effect of FgPt is due to the coexistence of a HS state at large volume and a
LS state at small volume, but contrary to the caseyfeffe, the ground state is now the
ferromagnetic HS state; this is brought about by the larger atomic volume of Pt. Thus, at
finite temperatures the increasing occupation of LS states leads to a large negative magnetic
contribution to the expansion coefficient, which insPeis observed to be 8 107° K1

nearTc.

In figure 5 we show the collinear contributiofi-(M, V) to the total energy as a
function of the Wigner—Seitz radius (= sre = spy) and the average magnetic moment
per atom {/ = %Mpe+ %Mpt). The ferromagnetic ground state is found at the crossing
point of the curves = 0 (the heavy dotted line) ang = 0 (the heavy dashed line) at a
Wigner-Seitz radius ofy = 2.79r3. Here at the iron sites we observe a magnetic moment
Mge = 2.671 5, and at the platinum sit&fp, = 0.27u 3 Which gives an average ground-state
moment of My = 2.07up per atom.

In figure 6 the non-collinear contributioBy (M, q) is shown for wave vectorg =
q(1,1,1)2x/a. Itis seen that likey-Fe, FgPt orders ferromagnetically at large values of
the magnetic moment{ > 1.9u3), and at small values a non-collinear antiferromagnetic
order is favoured.

Again, for the calculations of spin fluctuations in ;P¢ the parameters of the
Hamiltonian are extracted from the total-energy curves shown in figures 5 and 6. Here,
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Ec(M.s)

2.88
2.82
2.76
s/[re]
2.7

2.64

2.58

Figure 5. FesPt: the collinear contribution to the total enerfly: (M, V) in mRyd per unit cell.
The distance between nearest contour lines is 20 mRyd. The lodus=dd (- - -) andp =0
(= — -) (see the text) is also given.

1 1 1 e )
0 0.5 1 15 2
M/ [be]

Figure 6. FesPt: the non-collinear contribution to the total enedgy (M, q) in mRyd per unit
cell for wave vectorgy = (g, g, q)27 /a. The distance between nearest contour lines is 2 mRyd.
The line (- - -) depicts those wave vectaysvhich minimize E for fixed values ofM.

in analogy to earlier work [12, 19, 20, 39], we do not account for different volumes and
magnetic moments of Fe and Pt sites, and the total energy is written as a function of the
average values off andV per atomic site. As foy-Fe, terms up taw® and V4 in E¢

and E, are employed. For BPt, the self-consistency equations, (35)—(39), yield a Curie
temperature off = 504 K, which is somewhat larger than the experimental values of
430 K for ordered FgPts [40] and 390 K for disordered FgPtg [41].
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Figure 7. The magnetic contribution to the thermal expansion coefficieff@® K1) of
FesPt: the calculated curve (—) is compared with the experimental data of Sumateah@ - -:
ordered FgsPhs [40, 42] ard — — —: disordered FePtg [41, 42]). Note that the experimental
values of T are 430 K for ordered FePts and 390 K for disordered FePts.

Next, we show in figure 7 the calculated thermal expansion coefficient=
(1/3v)dv/dT of FePt, comparing it with the experimental curves for the magnetic
contribution to the expansion coefficient of orderedsP&s (the dashed line; reference
[40]) and disordered FePtg (the dotted line; reference [41]), taken from Menshikov [42].
Below T¢ the absolute value of the calculated expansion coefficient is seen to increase with
increasing temperature, having a maximumZat= T.. This behaviour is in reasonable
agreement with the peaks in the experimental curve, which occur at temperatures slightly
lower than the experimentdl-. This may be attributed to magnetic inhomogeneities, since
even in the ordered structure a small amount of displaced Fe and Pt sites is observed. The
singularity of«(T) at T = T is due to a strong coupling between the volumend the
magnetizationM accompanied by an unphysical singularity in the derivative/dT at T¢
which can be traced back to the mean-field approximation used. In the paramagnetic phase
the calculated expansion coefficient is positive and nearly constant with temperature, which
is due to the proportionality of the volume and the local magnetization and an approximately
linear increase of the paramagnetic quctuatieﬁﬁT); compare also figure 9, later.

4.3. y-Mn

Like y-Fe, purey-Mn is only observed as a high-temperature phase, but can be stabilized
by small amounts of other materials, for example Fe or Cu at low temperatures, and is
found to order antiferromagnetically below @&l temperature]y, of about 540 K [43].

Again, y-Mn shows an anomalous behaviour of the thermal expansion coefficient—see
e.g. [44, 45]—but, contrary tp-Fe or FgPt, belowTy y-Mn is observed to be tetragonally
distorted with ac/a ratio of ¢c/a >~ 0.945 atT = 0 K [43]. This lattice distortion is due
to the tetragonally reduced symmetry of the antiferromagnetic spin configuration, described
by a wave vectoy = (0, 0, 27 /¢) along thec-axis.

It should be mentioned here that in some cases a distorted structure may not be described
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Figure 8. The calculated total energf in mRyd for the ferromagnetic (FM) and the
antiferromagnetic (AM) phases of cubic (fcc) and tetragonal distorted {bdth as functions
of the magnetic momen¥ in ug.

correctly within the atomic sphere approximation as used in the ASW method, in particular
if the arrangement of orbitals leads to an aspherical charge density. This is not the case
in ¥-Mn, where the lattice distortion is solely caused by a difference in magnetic pressure
between parallel- and antiparallel-ordered Mn atoms, and does not lead to inequivalent Mn
sites.

In figure 8 the total-energy curveB(M) calculated for the ferromagnetic (FM) and
the antiferromagnetic (AM) phases of the cubic (fcc) and the tetragonally distorted (bct)
structure ofy-Mn are shown. In both structures the minimum of energy is given by the
antiferromagnetic phase, having a magnetic monnt~ 2.1545. Here it is seen that
the bct curve is lower in energy for value DLz < M < 2.8up; thus the ground state is
tetragonally distorted, whereas for small valués< 1.0 p the fcc structure is favourable.
Furthermore, it is seen that for both structures the ferromagnetic configuration cannot be
stabilized, since the energy increases rapidly with increasing magnitude of the mbéent

Due to the antiferromagnetic ground state which is defined by (3), where
(0,0, 27 /c), we now obtain spin fluctuations which differ from those in a ferromagnet.
In particular, the coupling betweeM and the longitudinal fluctuation&?, which in the
ferromagnet is weaker than that betweBfi and the transverse fluctuations’, is now
stronger in the antiferromagnet. This may be proved by comparing (29) with (30), and is
clearly seen in figure 9, where we collect together our resulty fdn. Shown here are
m?, mf, m> (in units of Mg), the magnetization/, and the local magnetic moment

t?
Ms=\/M2+2n~’l,«2+l’;llz

(in units of Mp), which should be compared with our results for fcc Ni obtained previously
[24]. For the Neel temperature we obtaiffiy = 446 K, which is smaller than the
experimental value (540 K).

To take into account the effect of the lattice distortion, we treat the volume dependence
by now expressing the total energy as a function of the distortion parathetar/a — 1,
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Figure 9. (a) The fluctuationsi?, 2, andm? (in MZ), the magnetizatiori, and the local
magnetic momend; (in Mp) of y-Mn; (b) the distortion parametér= c¢/a — 1 as function of
the temperaturd /K.

and add the following contribution to the total energy of equation (4):
Eqis(M, 8) = 8(Go + ¢1M? + £2M*) + 82 (no + niM? + n2M™).

The coefficientgy, ¢1, £2, no, 11, @andn, are evaluated by fitting gist(M, 8) to the computed
total-energy curves; see also figure 8.

The calculated distortiod(7) is shown in figure 9, where it is seen thatlecreases
with increasing temperature and vanishes in the paramagnetic Btatel{y). Furthermore,
at T = Ty a discontinuity of the magnetization is observed, which, most probably, is
a consequence of our mean-field approximation and the quadratic form of the model
Hamiltonian; see also [15, 22].

5. Conclusion

In summary, we have presented a first-principles theory for estimating finite-temperature
properties of itinerant-electron systems. We obtained all of the parameters entering a
Ginzburg—-Landau-type Hamiltonian by means of constrained-ground-state calculations using
the local density functional approximation. The gradient term in the Ginzburg—Landau
Hamiltonian was replaced by an exchange tdrth) which describes the excitation energies

of spin fluctuations, and was also obtained by constrained-ground-state calculations using
spin-spiral configurations. Furthermore, the detailed calculations of the thermal averages
of the Hamiltonian are accomplished by Taylor series expansions in the volume, the
magnetization, and the exchange parameters. This general treatment allows us to apply
our theory to systems with ferromagnetic, antiferromagnetic, or non-collinear ground states,
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and to materials with complex energy surfaces like Invar or anti-Invar alloys, enabling us
to investigate magneto-volume effectsyiaFe, FgPt, andy-Mn.

As shown in previous investigations [25, 26, 10, 11], the anharmonicity of the volume in
y-Fe and FgPt is properly reflected by the calculatedergy landscapes (M, V) (figures
1 and 5), and leads to an anti-Invar behaviouy iffe where the LS state is lower in energy
than the HS state, and to the Invar effect inewhere the ground state is the HS state.
Together with the magnetic excitation energies, extracted by means of calculations of non-
collinear ‘frozen-spin-wave'configurations (figures 2 and 6), our total-energy calculations
result in reasonablab initio values for the magneto-elastic properties foFe and FgPt,
and give an explanation of the atypical behaviouryiFe, which shows AM features at
low temperatures and FM behaviour at higher temperatures. Since the thermodynamical
description of fluctuations is performed within a quadratic (Gaussian) approximation of the
partition function, we cannot reproduce all of the features of the thermodynamics entirely
satisfactorily—which in particular leads to discrepancies at the transition temperature and
for T — 0. However, our estimates of the Curie temperatures given previously [24], as
well as the Curie and &kl temperatures given here, and the qualitatively correct description
of the Invar effect in FgPt and the anti-Invar effect ifr-Fe, must be called reasonably
successful.

Thus we may conclude that our total-energy density functional calculations provide a
good basis on which to estimate first-principles finite-temperature properties, although there
is room for much improvement.
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Table Al. Polynomial coefficientsttl of the ferromagnet up to powers= p + ¢t + [ = 4.

n=p+t+Il [=0 [=1 [=2 [=3 I[=4
n=0 =0 1

n=1 t=0 1 1
t=1 2
n=2 t=0 1 6 3
t=1 4 4
t=2 8
n=3 t=0 1 15 45 15
t=1 6 36 18
t=2 24 24
t=3 48

n=4 t=0 1 28 210 420 105
t= 8 120 360 120
t=2 48 288 144
t=3 192 192
t=4 384
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Appendix

The polynomial coefficients,,; are shown for the ferromagnetic configuratioﬁlftg)—

see (29)—in table Al and for the antiferromagnetic spin-spiral configuraﬁg‘p){—see
(30)—in table A2. Furthermore, the binomial coefficienits, of equation (32) are given

in table A3.
Table A2. Polynomial coefficientsFlftl of the antiferromagnet up to the powers= u+t+I/ = 4.
n=pu+t+l =0 [=1 [=2 [=3 [=4
n=0 =0 1
t=1 2
n=2 t=0 1 2 3
t=1 8 4
t=2 8
n=3 t=0 1 3 9 15
t=1 18 24 18
t=2 72 24
t=3 48
n=4 =0 1 4 18 60 105
t=1 32 72 144 120
t=2 288 288 144
t=3 768 192
t=4 384
Table A3. Binomial coefficientsG,, up to the powersn = v + 2w = 6.
m=v+2w w=0 w=1 w=2 w=3
v=0 1 1 3 15
v=1 1 3 15
v=2 1 6 45
v=3 1 10
v=4 1 15
v=>5 1
v=~6 1
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