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Abstract. The local density functional approximation (LDA) is used to calculate magnetic
and magneto-elastic properties of itinerant-electron systems at finite temperatures. At the centre
of the theory given are spin fluctuations whose modes are coupled by interatomic exchange
interactions. The susceptibilities, the Curie temperature, and the thermal expansion coefficients
are obtained from a Hamiltonian in whichall of the parameters are calculated usingab initio
constrained ground-state total energies. Results are given and compared with experiment for
three cases having exceptional magneto-elastic properties; these areγ -Fe, the Invar alloy Fe3Pt,
andγ -Mn.

1. Introduction

Perhaps the best known magneto-elastic effect is that observed in Invar alloys, like
e.g. FexNi1−x or FexPt1−x . This effect [1] has now been known of for 100 years, but
still attracts a great deal of attention—see for instance the reviews in [2–4].

In attempts to understand this effect theoretically, the early phenomenological two-state
model of Weiss [5] and later local density functional calculations [6, 7] suggested that
there are two energetically nearly degenerate states: a high-spin state with a large volume
and a large magnetic moment, and a low-spin state with a small volume and a small or
even vanishing magnetic moment, the energy difference of these being in the thermal range
and so permitting longitudinal spin fluctuations that lead to strongly coupled magnetic and
elastic degrees of freedom. Subsequently a large number of band-structure calculations were
performed for Invar alloys to obtain the total energy,E(M,V ), as a function of the magnetic
momentM and the volumeV [8–13]. By means of a semi-phenomenological Ginzburg–
Landau description that goes back to work of Murata and Doniach [14] and others [15–17],
the total energy can be used to obtain the phase transition and the temperature dependence
of the magnetic properties in weakly magnetic itinerant-electron systems; see e.g. [12,
13, 18–22]. The important point to notice here is that the expansion coefficients of the
free energy are extracted from the calculated total energy, whereas the coefficients of the
gradient term describing the mode–mode coupling of fluctuations are fitted to experimental
results [15, 23].

In a recent publication [24] we showed howall of the parameters of the Ginzburg–
Landau description can be obtained by means of total-energy calculations. In particular,
the gradient term is replaced by a more general coupling term which describes excitation
energies that can be obtained from total energies calculated for spin-spiral configurations.
Thus magnetic properties such as the Curie temperature and the magnetic susceptibility
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were calculatedab initio for Fe, Co, and Ni, resulting in fair agreement with experimental
data [24].

To generalize the theory to describe magneto-elastic properties, we must include
fluctuations of the volume in addition to those of the magnetization. Furthermore, in
contrast to the case for the transition metals, Fe, Co, and Ni, where the total energy as
a function of the magnetic moment can be approximated well using a rather small number
of expansion coefficients [24], the magnetic ordering inγ -Fe and the Invar alloy Fe3Pt
depends sensitively on the magnitude of the magnetic moment or the volume, as has been
shown in earlier work [25, 26]. Here, in Taylor series expansions of the total energy, we
must take into account a large number of terms involving powers of the magnetization
M and the volumeV . Thus, applying the theory toγ -Fe and Fe3Pt, we plot the total-
energy curves of the collinear and non-collinear spin arrangements, and use them to extract
the parameters valid for the spin-fluctuation Hamiltonian of each particular system. Using
this Hamiltonian in a mean-field theory, the temperature dependence of the magneto-elastic
properties is obtained, and the Curie temperature as well as the thermal expansion coefficient
are calculated and compared with experimental results. Finally, we focus our attention onγ -
Mn for which the antiferromagnetic ordering not only is connected with a volume expansion
but also is accompanied by a tetragonal lattice distortion which decreases with decreasing
order parameter and vanishes above the Néel temperature. We presentab initio calculations
for the Ńeel temperature and show the distortion parameter as a function of the temperature.

2. Spin-fluctuation theory

2.1. The total energy

To describe magneto-elastic properties of metallic systems, we assume that the Hamiltonian
H is a functional of the magnetizationM (r) and the volumeV (r), i.e.H[M (r), V (r)]
at any pointr in space. Thus, the total energy atT = 0 K is a function of the ground-
state valuesM̃ andV : E(M̃ , V ). Simplifying here, we restrict ther-dependence of the
Hamiltonian to values ofr on the crystal lattice which we denote by{R}. We thus omit
any fluctuations of the magnetization on a scale smaller than the interatomic distances. This
is an atomic sphere approximation because the magnetization vector of an atom at siteR
is characteristic for the entire atom at this site and the interstitial plays no role.

The magnetizationM̃ of the ground state is not necessarily ferromagnetic, but may
be defined by the magnitude of the magnetizationM, a wave vectorq describing the
propagation vector of a spiral, and a polar angleθ , such that the magnetic moment of an
atom at the siteR in the crystal is given in Cartesian coordinates by

M̃ = M(cos(q ·R) sinθ, sin(q ·R) sinθ, cosθ). (1)

For instance, a ferromagnet might be specified by the polar angleθ = 0◦:

M̃ = M(0, 0, 1) (2)

and an antiferromagnetic spiral configuration having a vanishing net magnetization by
θ = 90◦:

M̃ = M(cos(q ·R), sin(q ·R), 0) (3)

which in particular defines a collinear antiferromagnet if 2q is a reciprocal-lattice vector,
since in this case cos(q ·R) = ±1 and sin(q ·R) = 0.

We obtain the total energyE(M̃ , V ) numerically by means of constrained non-collinear
band-structure calculations using the non-collinear fixed-spin-moment method described in
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[25, 26]. In [26] it was also shown that the total energy can be separated with good accuracy
into a volume-dependent contributionEC of the collinear configuration and a volume-
independent non-collinear contributionEQ, which describes the energy difference between
spin configurations of different wave vectorsq: E(M̃ , V ) ' EC(M,V ) + EQ(M, q, θ).
This suggests that, for an analytic treatment, we may expand the energy contributionsEC
andEQ in powers ofV andM, where, because of time-reversal symmetry, only even powers
of M occur. Furthermore, since numerical calculations show thatEQ(M, q, θ) ∝ sin2 θ , we
may thus write the total energyE(M̃ , V ) as

E(M̃ , V ) =
nmax∑
n=0

mmax∑
m=0

AnmM
2nV m + sin2 θ

nmax∑
n=1

Jn(q)M
2n. (4)

This expansion defines the quantitiesAnm and Jn(q) which may thus be calculated from
total-energy differences. It was used by us previously in [24], where, however, we did not
consider any volume dependence. The appropriate values ofnmax andmmax will be specified
in section 3.

2.2. The Hamiltonian

The Hamiltonian of the crystal possessing magnetic momentsM (R) and volumeV (R) is
now written as

H = 1

N

∑
R

8C(M (R), V (R))+ 1

N

∑
R

∑
R′
8Q(M (R),M (R′)). (5)

For this Hamiltonian to yield the total energy given by (4), the first term on the right-hand
side,8C , denotes the collinear part of the total energy and is given by an expansion in
powers ofM2(R) andV (R) as

8C(M (R), V (R)) =
∑
n,m

AnmM
2n(R)V m(R). (6)

The second term on the right-hand side,8Q, originates from the non-collinear part of the
total energy and contains a description of magnetic exchange between the magnetic moments
on different sites,M (R) andM (R′). It is written as a Taylor series expansion as

8Q(M (R),M (R′)) =
∑
n

Jn(R−R′)M2n(R)(M (R) ·M (R′)). (7)

Here theJn(R −R′) denote exchange constants for different sites,R andR′, which are
connected with the quantityJn(q) defined in (4) by the lattice Fourier transform

Jn(R−R′) = 1

N

∑
k

Jn(k) exp(ik · (R−R′)). (8)

To treat fluctuations at finite temperatures, the classical fields,M (R) andV (R), are
decomposed into average values,M̃ andV , and fluctuations of the magnetizationmj(R)
(wherej = X, Y,Z denotes Cartesian components) and the volumew(R):

M (R) = M̃ +
∑
j

mj (R)ej (9)

V (R) = V + w(R). (10)
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Because of the periodicity of the crystal, the fluctuationsmj(r) andw(r) are given by
lattice Fourier transforms:

mj(R) =
∑
k∈1BZ

mjk exp(ik ·R) (11)

w(R) =
∑
k∈1BZ

wk exp(ik ·R) (12)

where the wave vectork lies in the first Brillouin zone (1BZ).

2.3. The free energy

Using the abbreviationβ = (kBT )−1, we write the partition functionZ and the free energy
F asZ = ∫ d0 exp(−βH) andF = −β−1 lnZ. Here

∫
d0 denotes the classical integral

over the phase space of fluctuations. Because the fluctuationsmj(R) andw(R) are real,
the number of independent variables is restricted bymj,+k = m∗j,−k = xjk + iyjk and
w+k = w∗−k = x0k + iy0k. Thus the integral over phase space is given by∫

d0 =
(∏
jk

′
∫

dxjk

∫
dyjk

)(∏
k

′
∫

dx0k

∫
dy0k

)
(13)

where the prime denotes that the product includes only onek-vector of the pair(+k,−k).
With the Hamiltonian given by (5), the partition functionZ cannot be evaluated exactly.

Therefore, the free energyF is approximated by the Peierls–Feynman inequality:

F 6 FSF = F0+ 〈H〉0− 〈H0〉0. (14)

For the so-called model Hamiltonian,H0, we use the quadratic form

H0 =
∑
jk

ajk|mjk|2+
∑
k

bk|wk|2 (15)

thus reducing the functional integration to Gaussian integrals. The free energy corresponding
toH0 is given byF0 = −β−1 lnZ0 whereZ0 =

∫
d0 exp(−βH0) and〈 〉0 denotes a thermal

average calculated with the model partition functionZ0. The approximate free energyFSF
is thus calculated to be

FSF = − 1

2β

∑
jk

ln

(
π

2βajk

)
− 1

2β

∑
k

ln

(
π

2βbk

)
+ 〈H〉0− 〈H0〉0. (16)

Finally, the coefficientsajk andbk appearing here are obtained variationally, i.e. they
are chosen as those which minimize the free energy:∂FSF /∂ajk = 0 and∂FSF /∂bk = 0.
To carry out this calculation we next express the thermal averages〈H〉0 and〈H0〉0 in terms
of ajk andbk.

2.4. Calculation of thermal averages

In general, the thermal average of a function,F , that depends on the fluctuationsxjk is
determined by

〈F(xjk)〉0 =
(∫

d0 F(xjk) exp(−βH0)

)/(∫
d0 exp(−βH0)

)
. (17)

Because of the simple model HamiltonianH0, the averages are Gaussian integrals, and one
obtains easily for even powers ofxjk andyjk

〈x2n
jk 〉0 = (2n− 1)!!(4βajk)

−n = (2n− 1)!! 〈x2
jk〉n0 (18)
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whereas averages of odd powers vanish,〈x2n−1
jk 〉0 = 0. (For j = 0 the quantityajk stands

for bk.) Thus, in the following we may replace the coefficientsajk andbk by the average
values〈|mjk|2〉0 = 〈x2

jk〉0+ 〈y2
jk〉0 and〈|wk|2〉0 = 〈x2

0k〉0+ 〈y2
0k〉0 in the form

〈|mjk|2〉0 = (2βajk)−1 〈|wk|2〉0 = (2βbk)−1. (19)

The averaged model Hamiltonian thus becomes

〈H0〉0 =
∑
jk

ajk〈|mjk|2〉0+
∑
k

bk〈|wk|2〉0 = 1

2β

∑
jk

1+ 1

2β

∑
k

1. (20)

The powers of the fluctuations,m2
j (R) =

∑
k |mjk|2 andw2

j (R) =
∑
k |wk|2, are calculated

to be

〈m2n
j (R)〉0 = (2n− 1)!!m̃2n

j (21)

〈w2n(R)〉0 = (2n− 1)!! w̃2n (22)

where

m̃2
j ≡

∑
k

〈|mjk|2〉0 (23)

and

w̃2 ≡
∑
k

〈|wk|2〉0. (24)

For the average of8Q, one uses (8), obtaining〈∑
R′
J (R−R′)m2n+1

j (R)mj (R
′)
〉
0
= (2n+ 1)!!(m̃2

j )
n
d̃2
nj (25)

where

d̃2
nj ≡

∑
k

Jn(k)〈|mjk|2〉0. (26)

Since the magnetizationM (R) is composed of the average magnetizationM̃ and
the components of fluctuationsmj(R), the thermal average〈M2n(R)〉0 is given by a
polynomial in powers of〈|mXk|2〉0, 〈|mYk|2〉0, 〈|mZk|2〉0, andM2. In particular, for the
ferromagnetic case and the antiferromagnetic case, where the magnetization is given by (2)
and (3), respectively, the average values of the two transverse fluctuations,mXk andmYk, are
degenerate, and we define transverse fluctuations by〈|mT k|2〉0 ≡ 〈|mXk|2〉0 = 〈|mYk|2〉0,
and longitudinal fluctuations by〈|mLk|2〉0 ≡ 〈|mZk|2〉0. Then we express the thermal
average〈M2n(R)〉0 in terms of powers ofm̃2

T , m̃2
L, andM2:

〈M2n(R)〉0 = 〈(MG +m(R))2n〉0 =
∑

µ+t+l=n
FµtlM

2µm̃2t
T m̃

2l
L (27)

where m̃2
T and m̃2

L are defined by (23) usingj = T and j = L, respectively. For the
thermal average involving the exchange-coupling terms, we obtain〈∑
R′
Jn(R−R′)M2n+1

j (R)Mj (R
′)
〉
0
=

∑
µ+t+l=n

FµtlM
2µm̃2t

T m̃
2l
L (λTµt d̃

2
nT + λLµld̃2

nL).

(28)
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The polynomial coefficientsFµtl , λTµt , andλLµl depend on the form of the macroscopic
magnetizationM̃ of (1). For the ferromagnet, equation (2), they are calculated as

FFµtl =
(µ+ t + l)!
µ!t !l!

2t t !(2µ+ 2l − 1)!!

(2µ− 1)!!

λFTµt = 2t + 2 λFLµl = 2µ+ 2l + 1
(29)

and for an antiferromagnetic spin-spiral configuration, equation (3), one obtains

FAµtl =
(µ+ t + l)!
µ!t !l!

2t (µ+ t)!(2l − 1)!!

µ!

λATµt = 2µ+ 2t + 2 λALµl = 2l + 1.
(30)

In the same way, the thermal averages of powers of the volume are calculated as

〈V m(R)〉0 = 〈(V + w(R))m〉0 =
∑

v+2u=m
GvuV

vw̃2u (31)

where the binomial coefficientsGvu are given by

Gvu = (v + 2u)!

v!(2u)!
(2u− 1)!! . (32)

A detailed calculation of the coefficientsFµtl , λTµt , λLµt , andGvu can be found in [27].
Finally, using equations (27), (28), and (31), we obtain for the thermal average of the

HamiltonianH, equation (5),

〈H〉0 =
∑
n,m

Anm〈M2n(R)〉0〈V m(R)〉0+
∑
n

〈∑
R′
Jn(R−R′)M2n+1

j (R)Mj (R
′)
〉
0

=
∑
µtl

n=µ+t+l

FµtlM
2µm̃2t

T m̃
2l
L

( ∑
vu

m=v+2u

AnmGvuV
vw̃2u + λTµt d̃2

nT + λLµld̃2
nL

)
.

(33)

This, together with (19), completes the specification of the free energy, equation (16). Tables
for the coefficientsFµtl andGvu are given in the appendix.

2.5. Self-consistency equations

The thermal equilibrium values forM and V as well as their fluctuations〈|mjk|2〉0 and
〈|wk|2〉0 are calculated by requiring that the quantitiesajk, bk, M, andV minimize the free
energyFSF , i.e.

0= ∂FSF
∂M

0= ∂FSF
∂V

0= ∂FSF
∂ajk

0= ∂FSF
∂bk

. (34)

Because of (19) we may replace the derivatives with respect toajk andbk by derivatives
with respect to〈|mjk|2〉0 and〈|wk|2〉0. Furthermore, using the identities

∂〈H〉0/∂〈|mjk|2〉0 = ∂〈H〉0/∂〈m̃2
j 〉0+

∑
n

Jn(k) ∂〈H〉0/∂〈d̃2
nj 〉0

and

∂〈H〉0/∂〈|mT k|2〉0 = 2∂〈H〉0/∂〈|mXk|2〉0
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we obtain the following self-consistency equations:

0= ∂〈H〉0
∂M

(35)

0= ∂〈H〉0
∂V

(36)

2

2β〈|mT k|2〉0 =
∂〈H〉0
∂m̃2

T

+
∑
n

Jn(k)
∂〈H〉0
∂d̃2

nT

(37)

1

2β〈|mLk|2〉0 =
∂〈H〉0
∂m̃2

L

+
∑
n

Jn(k)
∂〈H〉0
∂d̃2

nL

(38)

1

2β〈|wk|2〉0 =
∂〈H〉0
∂w̃2

. (39)

These equations are easily written out explicitly, and enable us to calculate self-consistently
the quantitiesM, V , 〈|mT k|2〉0, 〈|mLk|2〉0, and〈|wk|2〉0 which determine the thermal equil-
ibrium of the system.

In the paramagnetic case, the average magnetization vanishes, i.e.M = 0, and all
components of the fluctuations are degenerate,〈|mPk|2〉0 ≡ 〈|mXk|2〉0 = 〈|mYk|2〉0 =
〈|mZk|2〉0. In this case the mean value of the Hamiltonian can be simplified:

〈H(P )〉0 =
∑
n

(2n+ 1)!!m̃2n
P

( ∑
mvu

v+2u=m
AnmGvuV

vw̃2u + (2n+ 3)d̃2
nP

)
(40)

and the self-consistency equations of the paramagnetic case are given by equations (36),
(39), and

3

2β〈|mPk|2〉0 =
∂〈H〉0
∂m̃2

P

+
∑
n

Jn(k)
∂〈H〉0
∂d̃2

nP

. (41)

The inverse magnetic susceptibilityχ−1
j (k) can be calculated easily from the second

derivative of the free energy:

χ−1
j (k) = ∂2FSF

∂mj(+k) ∂mj(−k)
= 1

β〈|mjk|2〉0 = 2ajk. (42)

Evidently, the best variational coefficients of the free energy, equation (16), are given by
the inverse susceptibility,ajk = χ−1

j (k)/2, whosek-dependence is in first order given by

the Fourier coefficients of the exchange constants,χ−1
j (k) = χ−1

j (0)+ 2J0(k).

3. Calculational details

Our band-structure calculations presented here are performed with the augmented-spherical-
wave (ASW) method [28], which is based on the local spin-density approximation (LSDA)
to the density functional theory [29–31]. In particular, using the non-collinear fixed-spin-
moment method [25, 26] we are able to perform constrained-moments calculations of non-
collinear spin arrangements. This enables us to compute electronic properties of different
magnetic configurations, i.e. for any choice of the magnitudes of the momentsand their
directions, and to determine their mutual range of stability by comparing the resulting total
energies.
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4. Results

4.1. γ -Fe

In recent years,γ -Fe has received much attention [8, 9, 32], because, among other things,
many iron alloys showing anomalous magneto-elastic properties are based on the fcc
structure ofγ -Fe—for instance Fe65Ni35, Fe72Ni28, and Fe–Mn alloys [3]. In nature,γ -Fe
exists only as a high-temperature phase, whereas at low temperatures it can be stabilized
for instance by small amounts of Co [33, 34].

Experimental investigations [33, 34] have shown, that, at certain volumes,γ -Fe has an
antiferromagnetic ground state and, due to its frustration in the fcc lattice, assumes a non-
collinear spin configuration. These results are confirmed by theoretical work [35], including
band-structure calculations [25, 36, 37]. In recent work by Acetet al [32] magneto-elastic
properties ofγ -Fe were investigated, and an anomalously high thermal expansion coefficient
was observed which deviates significantly from the normal Grüneisen behaviour. This so-
called anti-Invar behaviour is explained by the coexistence of an antiferromagnetic low-spin
(LS) state at small volume and a ferromagnetic high-spin (HS) state at large volume; see
e.g. [38]. Thermal occupation of the HS state results in a large magnetic contribution
to the volume expansion. A detailed theoretical study of the different collinear and non-
collinear spin configurations ofγ -Fe was given previously [26]. However, a thermodynamic
treatment is still lacking. We present one here, based on the self-consistent spin-fluctuation
theory of section 2.

E  (M,s)  C     

 4

12

20

0 0.5 1 1.5 2 2.5 3

2.46

2.52

2.58

2.64

2.7

M / [    ]µB

s / [r  ]B

Figure 1. γ -Fe: the collinear contribution to the total energyEC(M,V ) in mRyd per unit cell.
The distance between nearest contour lines is 4 mRyd. The locus ofb = 0 (- - -) andp = 0
(– – –) (see the text) is also given.

In figures 1 and 2 we plot forγ -Fe the total-energy contributions,EC andEQ, which
add up to the total energy,E(M̃ , V ) = EC(M,V )+EQ(M, q, θ). The energy dependence
on the volumeV (or the corresponding Wigner–Seitz radiuss: V = (4π/3)s3) and the
magnetic momentM of EC(M, s) is shown in figure 1, which reveals that the ground state
of γ -Fe is non-magnetic, corresponding to the minimum ofEC(M, s) at M0 = 0µB and
s0 = 2.56rB , whererB denotes the Bohr radius. Furthermore, the locus of zero derivatives,
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E  (M,q)  Q     

 0

-7

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

M / [    ]µB

q 

Figure 2. γ -Fe: the non-collinear contribution to the total energyEQ(M, q) in mRyd per unit
cell for wave vectorsq = (0, 0, q)2π/a. The distance between nearest contour lines is 1 mRyd.
The line (- - -) depicts those wave vectorsq which minimizeEQ for fixed values ofM.

i.e. b = ∂EC/∂M = 0 (the heavy dotted line) andp = ∂EC/∂V = 0 (the heavy dashed
line) are drawn, which indicate an additional high-spin state of higher total energy having
a magnetization ofM = 2.5µB at a Wigner–Seitz radius ofs = 2.65rB .

In figure 2 the total-energy contributionEQ(M, q) describes the total-energy costs of a
spin-spiral arrangement defined by the vectorq and the magnitude of the momentM; see
(3). Here the heavy dashed line denotes the particular wave vectorq0 which minimizesEQ
for a given value ofM. It is seen that at small values of the magnetization (M < 2.5µB) the
moments tend to order antiferromagnetically (q 6= 0), whereas at large values (M > 2.5µB)
the ferromagnetic configuration (q = 0) is favoured.

This complex behaviour of the energy surfaces shown in figure 1 and figure 2 gives rise
to the need to use a large number of terms in the Taylor series expansion of the total energy
E(V,M, q), given by (4). In particular, forγ -Fe, terms up toM8 andV 4 in EC(M,V )

andEQ(M, q) must be employed. Theq-dependence of the latter is approximated by a set
of 20 vectorsq, spread homogeneously over the irreducible part of the Brillouin zone.

With this numerical input and the equations (35)–(39), the fluctuationsmjk and wk
as well as the equilibrium values ofM andV were calculated self-consistently, scanning
a large temperature range. Our results forγ -Fe are shown in figure 3, where we plot
the paramagnetic fluctuations,̃m2

P =
∑
k 〈|mPk|2〉0, as a function ofT , from which the

magnitude of the local momentMs is calculated as

Ms =
√

3m̃2
P .

Also given are the inverse susceptibilitiesχ−1(k) = (β〈|mPk|2〉0)−1 for two differentk-
vectors,χ−1(F) for k = (0, 0, 0) (the uniform susceptibility or ferromagnetic mode) and
χ−1(A) for k = (0, 0, 2π/a) (the staggered susceptibility or antiferromagnetic mode).

At low temperatures,χ−1(F) is about ten times larger thanχ−1(A), whereas with
increasing temperatures,χ−1(A) increases more quickly thanχ−1(F). Thus at low
temperatures, predominantly antiferromagnetic fluctuations forming small local magnetic



7894 M Uhl and J Kübler
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Figure 3. Paramagnetic fluctuations (m̃2
p/µ

2
B ), the susceptibilitiesχ−1(F) and χ−1(A) in

mRyd/µ2
B , and the magnetic correlation of nearest neighboursKnn/µ

2
B , scaled by a factor

of 10, for γ -Fe, as a function of temperature.

moments (Ms < 1.5µB) are excited, whereas at higher temperatures a large occupation
of ferromagnetic fluctuations occurs, leading toMs > 1.5µB ; see also figure 2. This
is shown even more convincingly by the magnetic correlation between nearest-neighbour
sites, defined by

κnn = 〈M (0) ·M (dnn)〉0 = 3
∑
k

cos(k · dnn)〈|mPk|2〉0

wherednn is the distance between nearest neighbours. The correlation function,κnn(T ),
is also shown in figure 3, where atT ' 390 K we observe a maximal antiferromagnetic
coupling, noticeable by the minimum ofκnn(T ).

In figure 4 we show the magnetic contribution to the temperature dependence of the
volumeV and the thermal expansion coefficient,α = (1/3V )dV/dT . Our calculated curves
(calc.) are compared with experimental data (exp.) of Acetet al [32]. The increase of the
volume is brought about by a thermal occupation of high-spin states associated with large
volumes, as shown in figure 1. It is seen that forT > 600 K the experimental thermal
expansion coefficient decreases slightly with increasing temperature, which is due to its
magnetic contribution. This behaviour is in agreement with our calculations, and may
be explained by the fact that with increasing temperature the increase in the fluctuations
becomes smaller, leading to a smaller but still positive value ofα(T ) even for temperatures
above 1000 K. In a large temperature range our calculated thermal expansion coefficient is
somewhat smaller than the experimental one but still in reasonable agreement, whereas near
T = 0 we obtain a non-vanishingα(T ). This incorrect behaviour is due to our treating the
spin fluctuations as classical variables, which does not describe properly the freezing out of
the spin excitations atT → 0.
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4.2. Fe3Pt

Fe3Pt is one of the best-known Invar alloys. It is based on the fcc structure ofγ -Fe, where
one of four Fe atoms in the cubic unit cell is replaced by Pt. Similar to the case forγ -Fe,
the Invar effect of Fe3Pt is due to the coexistence of a HS state at large volume and a
LS state at small volume, but contrary to the case forγ -Fe, the ground state is now the
ferromagnetic HS state; this is brought about by the larger atomic volume of Pt. Thus, at
finite temperatures the increasing occupation of LS states leads to a large negative magnetic
contribution to the expansion coefficient, which in Fe3Pt is observed to be 3× 10−5 K−1

nearTC .
In figure 5 we show the collinear contributionEC(M,V ) to the total energy as a

function of the Wigner–Seitz radius (s = sFe = sPt) and the average magnetic moment
per atom (M = 3

4MFe+ 1
4MPt). The ferromagnetic ground state is found at the crossing

point of the curvesb = 0 (the heavy dotted line) andp = 0 (the heavy dashed line) at a
Wigner–Seitz radius ofs0 = 2.79rB . Here at the iron sites we observe a magnetic moment
MFe= 2.67µB , and at the platinum siteMPt = 0.27µB which gives an average ground-state
moment ofM0 = 2.07µB per atom.

In figure 6 the non-collinear contributionEQ(M, q) is shown for wave vectorsq =
q(1, 1, 1)2π/a. It is seen that likeγ -Fe, Fe3Pt orders ferromagnetically at large values of
the magnetic moment (M > 1.9µB), and at small values a non-collinear antiferromagnetic
order is favoured.

Again, for the calculations of spin fluctuations in Fe3Pt, the parameters of the
Hamiltonian are extracted from the total-energy curves shown in figures 5 and 6. Here,
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in analogy to earlier work [12, 19, 20, 39], we do not account for different volumes and
magnetic moments of Fe and Pt sites, and the total energy is written as a function of the
average values ofM andV per atomic site. As forγ -Fe, terms up toM8 andV 4 in EC
andEQ are employed. For Fe3Pt, the self-consistency equations, (35)–(39), yield a Curie
temperature ofTC = 504 K, which is somewhat larger than the experimental values of
430 K for ordered Fe75Pt25 [40] and 390 K for disordered Fe72Pt28 [41].
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Next, we show in figure 7 the calculated thermal expansion coefficientα =
(1/3V )dV/dT of Fe3Pt, comparing it with the experimental curves for the magnetic
contribution to the expansion coefficient of ordered Fe75Pt25 (the dashed line; reference
[40]) and disordered Fe72Pt28 (the dotted line; reference [41]), taken from Menshikov [42].
Below TC the absolute value of the calculated expansion coefficient is seen to increase with
increasing temperature, having a maximum atT = TC . This behaviour is in reasonable
agreement with the peaks in the experimental curve, which occur at temperatures slightly
lower than the experimentalTC . This may be attributed to magnetic inhomogeneities, since
even in the ordered structure a small amount of displaced Fe and Pt sites is observed. The
singularity ofα(T ) at T = TC is due to a strong coupling between the volumeV and the
magnetizationM accompanied by an unphysical singularity in the derivative dM/dT at TC
which can be traced back to the mean-field approximation used. In the paramagnetic phase
the calculated expansion coefficient is positive and nearly constant with temperature, which
is due to the proportionality of the volume and the local magnetization and an approximately
linear increase of the paramagnetic fluctuationsm̃2

p(T ); compare also figure 9, later.

4.3. γ -Mn

Like γ -Fe, pureγ -Mn is only observed as a high-temperature phase, but can be stabilized
by small amounts of other materials, for example Fe or Cu at low temperatures, and is
found to order antiferromagnetically below a Néel temperature,TN , of about 540 K [43].

Again, γ -Mn shows an anomalous behaviour of the thermal expansion coefficient—see
e.g. [44, 45]—but, contrary toγ -Fe or Fe3Pt, belowTN γ -Mn is observed to be tetragonally
distorted with ac/a ratio of c/a ' 0.945 atT = 0 K [43]. This lattice distortion is due
to the tetragonally reduced symmetry of the antiferromagnetic spin configuration, described
by a wave vectorq = (0, 0, 2π/c) along thec-axis.

It should be mentioned here that in some cases a distorted structure may not be described



7898 M Uhl and J Kübler
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correctly within the atomic sphere approximation as used in the ASW method, in particular
if the arrangement of orbitals leads to an aspherical charge density. This is not the case
in γ -Mn, where the lattice distortion is solely caused by a difference in magnetic pressure
between parallel- and antiparallel-ordered Mn atoms, and does not lead to inequivalent Mn
sites.

In figure 8 the total-energy curvesE(M) calculated for the ferromagnetic (FM) and
the antiferromagnetic (AM) phases of the cubic (fcc) and the tetragonally distorted (bct)
structure ofγ -Mn are shown. In both structures the minimum of energy is given by the
antiferromagnetic phase, having a magnetic momentM0 ' 2.15µB . Here it is seen that
the bct curve is lower in energy for values 1.0µB < M < 2.8µB ; thus the ground state is
tetragonally distorted, whereas for small valuesM < 1.0µB the fcc structure is favourable.
Furthermore, it is seen that for both structures the ferromagnetic configuration cannot be
stabilized, since the energy increases rapidly with increasing magnitude of the momentM.

Due to the antiferromagnetic ground state which is defined by (3), whereq =
(0, 0, 2π/c), we now obtain spin fluctuations which differ from those in a ferromagnet.
In particular, the coupling betweeñM and the longitudinal fluctuations̃m2

l , which in the
ferromagnet is weaker than that betweenM̃ and the transverse fluctuations̃m2

t , is now
stronger in the antiferromagnet. This may be proved by comparing (29) with (30), and is
clearly seen in figure 9, where we collect together our results forγ -Mn. Shown here are
m̃2
t , m̃

2
l , m̃

2
p (in units ofM2

0), the magnetizationM, and the local magnetic moment

Ms =
√
M2+ 2m̃2

t + m̃2
l

(in units ofM0), which should be compared with our results for fcc Ni obtained previously
[24]. For the Ńeel temperature we obtainTN = 446 K, which is smaller than the
experimental value (540 K).

To take into account the effect of the lattice distortion, we treat the volume dependence
by now expressing the total energy as a function of the distortion parameterδ = c/a − 1,
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and add the following contribution to the total energy of equation (4):

Edist(M, δ) = δ(ζ0+ ζ1M
2+ ζ2M

4)+ δ2(η0+ η1M
2+ η2M

4).

The coefficientsζ0, ζ1, ζ2, η0, η1, andη2 are evaluated by fittingEdist(M, δ) to the computed
total-energy curves; see also figure 8.

The calculated distortionδ(T ) is shown in figure 9, where it is seen thatδ decreases
with increasing temperature and vanishes in the paramagnetic state (T > TN ). Furthermore,
at T = TN a discontinuity of the magnetization is observed, which, most probably, is
a consequence of our mean-field approximation and the quadratic form of the model
Hamiltonian; see also [15, 22].

5. Conclusion

In summary, we have presented a first-principles theory for estimating finite-temperature
properties of itinerant-electron systems. We obtained all of the parameters entering a
Ginzburg–Landau-type Hamiltonian by means of constrained-ground-state calculations using
the local density functional approximation. The gradient term in the Ginzburg–Landau
Hamiltonian was replaced by an exchange termJ (k) which describes the excitation energies
of spin fluctuations, and was also obtained by constrained-ground-state calculations using
spin-spiral configurations. Furthermore, the detailed calculations of the thermal averages
of the Hamiltonian are accomplished by Taylor series expansions in the volume, the
magnetization, and the exchange parameters. This general treatment allows us to apply
our theory to systems with ferromagnetic, antiferromagnetic, or non-collinear ground states,
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and to materials with complex energy surfaces like Invar or anti-Invar alloys, enabling us
to investigate magneto-volume effects inγ -Fe, Fe3Pt, andγ -Mn.

As shown in previous investigations [25, 26, 10, 11], the anharmonicity of the volume in
γ -Fe and Fe3Pt is properly reflected by the calculatedenergy landscapes, E(M,V ) (figures
1 and 5), and leads to an anti-Invar behaviour inγ -Fe where the LS state is lower in energy
than the HS state, and to the Invar effect in Fe3Pt where the ground state is the HS state.
Together with the magnetic excitation energies, extracted by means of calculations of non-
collinear ‘frozen-spin-wave’configurations (figures 2 and 6), our total-energy calculations
result in reasonableab initio values for the magneto-elastic properties forγ -Fe and Fe3Pt,
and give an explanation of the atypical behaviour inγ -Fe, which shows AM features at
low temperatures and FM behaviour at higher temperatures. Since the thermodynamical
description of fluctuations is performed within a quadratic (Gaussian) approximation of the
partition function, we cannot reproduce all of the features of the thermodynamics entirely
satisfactorily—which in particular leads to discrepancies at the transition temperature and
for T → 0. However, our estimates of the Curie temperatures given previously [24], as
well as the Curie and Ńeel temperatures given here, and the qualitatively correct description
of the Invar effect in Fe3Pt and the anti-Invar effect inγ -Fe, must be called reasonably
successful.

Thus we may conclude that our total-energy density functional calculations provide a
good basis on which to estimate first-principles finite-temperature properties, although there
is room for much improvement.
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Table A1. Polynomial coefficientsFFµtl of the ferromagnet up to powersn = µ+ t + l = 4.

n = µ+ t + l l = 0 l = 1 l = 2 l = 3 l = 4

n = 0 t = 0 1

n = 1 t = 0 1 1
t = 1 2

n = 2 t = 0 1 6 3
t = 1 4 4
t = 2 8

n = 3 t = 0 1 15 45 15
t = 1 6 36 18
t = 2 24 24
t = 3 48

n = 4 t = 0 1 28 210 420 105
t = 1 8 120 360 120
t = 2 48 288 144
t = 3 192 192
t = 4 384
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Appendix

The polynomial coefficientsFµtl are shown for the ferromagnetic configuration (FFµtl)—
see (29)—in table A1 and for the antiferromagnetic spin-spiral configuration (FAµtl)—see
(30)—in table A2. Furthermore, the binomial coefficientsGvu of equation (32) are given
in table A3.

Table A2. Polynomial coefficientsFAµtl of the antiferromagnet up to the powersn = µ+t+l = 4.

n = µ+ t + l l = 0 l = 1 l = 2 l = 3 l = 4

n = 0 t = 0 1

n = 1 t = 0 1 1
t = 1 2

n = 2 t = 0 1 2 3
t = 1 8 4
t = 2 8

n = 3 t = 0 1 3 9 15
t = 1 18 24 18
t = 2 72 24
t = 3 48

n = 4 t = 0 1 4 18 60 105
t = 1 32 72 144 120
t = 2 288 288 144
t = 3 768 192
t = 4 384

Table A3. Binomial coefficientsGvu up to the powersm = v + 2w = 6.

m = v + 2w w = 0 w = 1 w = 2 w = 3

v = 0 1 1 3 15
v = 1 1 3 15
v = 2 1 6 45
v = 3 1 10
v = 4 1 15
v = 5 1
v = 6 1
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